Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages.
نویسندگان
چکیده
Many studies suggest limited effectiveness of spray devices for nasal drug delivery due primarily to high deposition and clearance at the front of the nose. Here, nasal spray behavior was studied using experimental measurements and a computational fluid dynamics model of the human nasal passages constructed from magnetic resonance imaging scans of a healthy adult male. Eighteen commercially available nasal sprays were analyzed for spray characteristics using laser diffraction, high-speed video, and high-speed spark photography. Steadystate, inspiratory airflow (15 L/min) and particle transport were simulated under measured spray conditions. Simulated deposition efficiency and spray behavior were consistent with previous experimental studies, two of which used nasal replica molds based on this nasal geometry. Deposition fractions (numbers of deposited particles divided by the number released) of 20- and 50-microm particles exceeded 90% in the anterior part of the nose for most simulated conditions. Predicted particle penetration past the nasal valve improved when (1) the smaller of two particle sizes or the lower of two spray velocities was used, (2) the simulated nozzle was positioned 1.0 rather than 0.5 or 1.5 cm into the nostril, and (3) inspiratory airflow was present rather than absent. Simulations also predicted that delaying the appearance of normal inspiratory airflow more than 1 sec after the release of particles produced results equivalent to cases in which no inspiratory airflow was present. These predictions contribute to more effective design of drug delivery devices through a better understanding of the effects of nasal airflow and spray characteristics on particle transport in the nose.
منابع مشابه
Modelling the inhalation of drug particles in a human nasal cavity
A human nasal cavity was reconstructed from CT scans to make a Computational Fluid Dynamics (CFD) model. With this model, fluid flow and inhalation of aerosol analysis can be investigated. The surface of the interior nasal cavity is lined with highly vascularised mucosa which provides a means for direct drug delivery into the blood stream. Typical sprayed particles from a nasal spray device pro...
متن کاملAutomating nasal spray analysis
Nasal sprays and aerosols are becoming increasingly popular methods for drug delivery. The nasal route is a non-invasive way of administering drugs with rapid uptake into the bloodstream and is considered to be important for the systematic delivery of proteins and other macromolecules. A key parameter in defining the efficiency of nasal aerosol delivery systems is the particle size distribution...
متن کاملComputational fluid dynamics simulations of inhaled nano- and microparticle deposition in the rhesus monkey nasal passages.
Anatomically accurate computational fluid dynamics (CFD) models of the nasal passages of an infant (6 months old, 1.3 kg) and adult (7 years old, 11.9 kg) rhesus monkey were used to predict nasal deposition of inhaled nano- and microparticles. Steady-state, inspiratory airflow simulations were conducted at flow rates equal to 100, 200 and 300% of the estimated minute volume for resting breathin...
متن کاملLocal Deposition Sites of Drug Particles in a Human Nasal Cavity
INTRODUCTION ABSTRACT Particle depositional studies from nasal sprays are important for efficient drug delivery. The main influences on deposition involve the nasal cavity geometry and the nasal spray device of which its parameters are controlled by the product design. It is known that larger particle sizes (>>10μm) at a flow rate of 333 ml/s impact in the anterior portion of the nose, leaving ...
متن کاملDeposition of inhaled nanoparticles in the rat nasal passages: dose to the olfactory region.
In vivo experiments have shown that nanoparticles depositing in the rat olfactory region can translocate to the brain via the olfactory nerve. Quantitative predictions of the dose delivered by inhalation to the olfactory region are needed to clarify this route of exposure and to evaluate the dose-response effects of exposure to toxic nanoparticles. Previous in vivo and in vitro studies quantifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of aerosol medicine : the official journal of the International Society for Aerosols in Medicine
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2007